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Abstract 

As moro resources arc added to computer notworksr and as morn vaidors look to the World Wide Wob as 
a viable marketplacer the importance of being able to restrict access and to insure some kind of acceptable 
behavior even in the presence of malicious intruders becomes paramount. People have looked to cryptography 
to help solve many of these problems. Howeverr cryptography itself is only a tool. The security of a system 
depends not only on the cryptosystem being usedrbut also on how it is used. Typicallyü researhers have 
proposed the use of security protocols to provide these security guarantees. These protocols consist of a 
sequence of messagesr mary with encrypted parts. In this paperr TO develop a way of verifying these protocols 
using model checking. Model checking has proven to be a very useful technique for verifying hardware designs. 
By modelling circuits as finite-state machinesr and examining all possible execution traces!"1 modelhecking 
has found a number of errors in real world designs. Like hardware designs!"1 securiy protocols are very subtler 
and can also have bugs which are difficult to find. By examining all possible execution traces of a security 
protocol in the presence of a malicious intruder with well defined capabilities!"1 TO can determine if a protocol 
does indeed enforce its security guarantees. If notr TO can provide a sample trace of an attack on the protocol. 
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1 Introduction 

Security for early computers was provided by their physical isolation. Unauthorized access to these machines 
was prevented by restricting physical access. The importance of sharing computing resources led to systems 
where users had to authenticate thcmselvesl"1 usually h/ providing a name/password pair. This was sufficient 
if the user needed to be physically at the console or was connected to the machine across a secure link. 
Howeverr the efficiency to be gained b/ sharing data and computing resources has led to computer nctworksr 
in which the communication channels cannot always be trusted. In this caser authertication information such 
as the name/password pairs could be intercepted and even replayed to gain unauthorized access. When such 
networks were local to a certain user community and isolated from the rest of the worldr mar/ were willing 
take this risk and to place their trust in the community. Howeverr in order to be able to share information 
with those outside the communityT this isolation wmld have to be removed. The benefits to be had by such 
sharing have been enormousr and the gains are demonstrated b/ the growth of such entities as the Internet 
and the World Wide Web. Nowl"1 Try fewr if ary guarantees can be made about the communication links. 
Numerous protocols that take advantage of cryptography have been proposed that claim to solve many of 
the security issues. The correctness of these protocols is paramountrespecially when we consider the size 
of the networks involved and the desire of users to place confidential information and to allow for monetary 
transactions to take place across these networks. 

Typicallyr these protocols can be though of as a set of principals which send messages to each other. The 
hope is that by requiring agents to produce a sequence of messagesr the securiy goals of the protocol can be 
achieved. For exampler if a principal^ receives a message encrypted with a key known only by principals A 
and BY then principalA should be able to conclude that the message originated from principal B. Howeverr 
it would be incorrect to conclude that principal A is talking to principal B. An adversary could be replaying 
a message overheard during a pervious conversation between A and B. Sol1 depending on the securiy goal 
of this simple example protocoir the protocol my or may not be secure. Because the reasoning behind the 
correctness of these protocols can be subtler a lumber of researchers have turned to formal methods to prove 
protocols correct. 

In order to concentrate on the security of the protocol itself as opposed to the the security of the 
cryptosystem usedPthe vast majority of research in this area has made the following "perfect encryption" 
assumptions. 

• The decryption key must be known in order to extract the plaintext from the cyphertext. 

• There is enough redundancy in the cryptosystem that a cyphertext can only be generated using en- 
cryption with the appropriate key. This also implies that there are no encryption collisions. If two 
cyphcrtcxts are equair they mist have been generated from the same plaintext using the same key. 

While the assumptions are obviously not truer they arer in practicer rcasonabltThcy are important because 
they allow us to abstract away the cryptosystem and analyze the protocol itself. In particularr if there is an 
attack on this abstracted protocoir then the same attafc exists when a real cryptosystem is used. 

2 Related Work 

Because these protocols tended to be short and not terribly complicatedr informal argumerts were used to 
prove their correctness. Howeverr when running in paralleir the befeior of these protocols is more difficult 
to analyze. Asynchronous composition is already difficult to reason aboutr and adding issues of who knnvs 
what and when makes reasoning about security protocols extremely difficult. One recent approach taken 
by Bellare and Rogaway and by Shoup and Rubinris to try to provide a rigorous mathematical proof of 
the correctness of a protocol [3r21]. They use properties of pseudo-random functions and mathematical 
arguments to prove that an adversary does not have a statistical advantage when trying to discover a key in 
a session key distribution protocol. 

One of the earliest successful attempts at formally reasoning about security protocols involved developing 
a new logic in which one could express and deduce security properties. The earliest such logic is commonly 
referred to as the BAN logic and is due to Burrows!1 Abadir and Needham [6].   Their syntax provided 



constructs for expressing intuitive properties like "A said XF' "A beliefs XV "K is a good leyF' and "S is 
an authority on X." They also provide a set of proof rules which can then be used to try to deduce security 
properties like "A and B believe K is a good key" from a list of explicit assumptions made about the protocol. 
This formalism was successful in uncovering implicit assumptions that had been made and weaknesses in 
a number of protocols. Howeverr this logic has been criticized for the "protocol idealization" step required 
when using this formalism. Protocols in the literature are typically given as a sequence of messages. Use 
of the BAN logic requires that the user transform each message in the protocol into formulas about that 
messager so thatthe inferences can be made within the logic. For examplerif the server sends a message 
containing the key /Cil.rthen that step might need to be converted into a step where the server sends a 

message containing A if DF meaning that the ley K,a is a good key for communication between A and D. 
An attempt to give this logic a rigorous semantics was made by Abadi and Tuttle [2] and other attempts to 
improve or expand the logic can be found in [22]. The BAN logic remains popular because of its simplicity 
and high level of abstraction. 

Recent work in the use of modal logics for verifying security protocols includes the development of a 
logic that can express accountability [13]. Kailar convincingly argues that in applications such as electronic 
commercer it is accourtability and not belief that is important. Like their counterparts in the paper worldr 
one would like people to be held accountable for their electronic transactions. This means that it is not 
enough for the individual participants to believe that a transaction is taking place. They must be able 
to prove to a third party that a transaction is taking place. Kailar provides a syntax which allows such 
properties to be expressed and a set of proof rules for verifying them. Similar to the BAN logic.rKailar's 
accountability logic is at a very high level of abstraction. StihT Kailar is able to use it to analyze four 
protocols and to find a lack of accountability in a variant of one of CMU's Internet Billing Server Protocols. 

An orthogonal line of research revolves around trying to automate the process of verification when using 
these logics. Craigen and Saaltink attempt this by embedding the BAN logic in EVES [7]. The automation 
resulting from this experiment was not satisfactory. By building a forward-chaining mechanism and changing 
some of the rulesr they Wire able to build a system that would try to develop the entire theory of a set of 
axioms (find the closure of a set of formulas under the derivation rules). Kindred and Wing went further by 
proposing a theory-checker generator [14]. They provide a formal and well defined framework with assurances 
about correctness and termination. In additionr their system generates theory heckers for a variety of logics 
including BANr AJTLOGr and Kailar's accomtability logic. 

The third technique can be placed in the general category of model checking. The common approach 
here is to model the protocol by defining a set of states and a set of transitions that takes into account an 
intruderr the messages comnunicated back and forthr and the information knnvn by each of the principals. 
This state space can then be traversed to check if some particular state can be reached or if some state 
trace can be generated. The first attempt at such a formalism is due to Dolev and Yao [8]. They develop 
an algorithm for determining whether or not a protocol is secure in their model. Howeverrtheir model 
is extremely limited. They only consider secrecy issuesrand they model only encryptionr decryptionland 
addingr heckingr or deleting a principal name. 

Meadows used an extension of the Dolev-Yao model in her PROLOG based model checker [17]. In her 
systemrthe user models a protocol as a set of rules that describe how an intruder generates knowledge. 
These rules model both how the intruder can generate knowledge on its own by applying encryption and 
decryptionr and h<w the intruder can generate new knowledge by receiving responses to messages it sends 
to the principals participating in the protocol. In additionr the user specifies rewrite rules that, indicate hew 
words are reduced. Typicallyr there are three rides used to capture the notion of oqualfy and the fact that 
encryption and decryption are inverse functions. These rides are: 

encrypt(Xrdecrypt (XrY))-> Y 
decrypt(Xroncrypt (XrY))-> Y 
id-chcck(XTX)-> yes 

To perform the verificationr the user supplies a description of an insecure state. The model checker then 
searches backwards in an attempt to find an initial state. This is accomplished naturally in PROLOG by 
attempting to unify the current state against the right hand side of a rule and thus deducing from the left 



hand side what the state description for tho previous state must, be. If the initial state is foundrthen the 
system is inseeurer otherwise an attempt is made to prcyo that the insecure state is unreachable by showing 
that any state that leads to this particular state is also unreachable. This kind of search often leads to an 
infinite trace where in order for the intruder to learn word Ar it nust learn word Br and in order to learn 
word Br it mist, learn word CT and so on. For this reason a facility for formal languages is included which 
allows the user to prove that no word in a set of words (or language) can bo generated by the intruder. The 
technique involves the following steps: 

• Show that the word in question is in the language. 

• Show that knowledge of any word in the language requires previous knowledge of another word in the 
language. 

• Show that the initial state does not contain any word in the language. 

This initial model checker was still too limited. In particularr itdid not allow the modeling of freshly 
generated nonces or session keys. The model checker evolved into the NRL Protocol Analyzer [18] which 
allowed for these operations. In addition the model changed to include the states of the participants as 
well as the state of the intruder while still maintaining the old paradigm of unifying against the right hand 
sides of transition rules in order to generate predecessor states. Howeverr if arythingr the model has become 
more comploxr and it still suffers from the most importari weaknesses of the original system. There is no 
systematic way of converting a protocol description into a set of transition rules for the NRL Analyzer. The 
model checker also relies heavily on the user during the verification much in the same way a theorem prover 
relies on the user to guide it during the search for a proof. Finallyr the algorithms used in the NRL Analyzer 
are not guaranteed to terminater and so a limit is placed on the lumber of recursive calls allowed for some 
of the model checking routines. 

Woo and Lam propose a much more intuitive model for authentication protocols [23]. Their model 
resembles sequential programming with each participating principal being modelled independently. There 
is an easy and obvious translation from the common description of a protocol as a set of messages to their 
model. Their models are also more intuitive because they consider all possible execution traces instead of 
considering just the set of words obtainable by the intruder. They are concerned with checking for what they 
call secrecy and em correspondence properties. The secrecy property is expressed as a set of words (usually 
keys) that the intruder is not allowed to obtain. The correspondence properties can express things of the 
form if principal A finishes a protocol run with principal Br then principal B nust have started (participated 
in) the protocol run with A. Howeverrthey do not provide a general logic in which to formalize security 
propertiesr nor do they pnyido an automated tool. Instead they present a set of inference rules with which 
you can prove correspondence assertions about a model [24]. In additionrthe description of their modeir 
while intuitiver is not, Try precise or formal. 

Bolignano presents a model that, is almost a middle point between these last, two [4]. Like Moadowsl1 

Bolignano emphasizes the algebraic properties of the intruder when trying to derive words. The state of 
the intruder then is the set of words it, can generaterwhile the state of the participants is determined by 
the values of the variables that, correspond to the protocol and their program counters. A number of rules 
to reason about what, information is contained in what, messages are provided which can then be used to 
prove properties about, a protocol. In the example givenl" all propertiesr including authddcationr are grai 
in terms of an invariant, that must, be proven. Because the invariant, must, bo proven to hold for all protocol 
stepsr this can become unvieldy very quickly. 

Other recent, work in this area has involved trying to use generic verification tools to verify security 
protocols. In [lG]r Lowe uses the FDR model checker for CSP [12] to analyze the Ncodham-Schroodor 
Public-Key Authentication Protocol [19], Lowe succeeded in finding a previously unpublished error in the 
protocol. The fact that, he was able to use a generic model checker is promising as well. Unfortunatelyr 
the CSP model for the protocol is far from straightforward. In additionl1 the model is parameterized h/ the 
nonces used by the participants. This means that, it, only models a single run of the protocol. In order to 
prove the general protocol correct he must prove a theorem that, states that the general protocol is insecure 
onlv if this restricted version is insecure. 



Loduc and others recently used the LOTOS language [5] and the Eucalyptus tool-box [9] to analyze the 
Equicrypt protocol [15]. What makes this an interesting case study is the fact that the Equierypt protocol 
is a real system currently under design for use in controlling access to multimedia services broadcast on a 
public channel. They were able to find a couple of security flaws in this proposed system using these generic 
tools. 

Gray and McLean propose encoding the entire protocol in terms of temporal logic [10]. Much like symbolic 
model checkingr they describe the model b/ giving formulas that express the possible relationships between 
variable values in the current state and variable values in the next state. This makes their framework more 
formal than the othersrbut much more cumbersome as well. They provide a simple example and prove 
a global invariant for this example. The few subcases they consider are very straightforward but their 
technique demands very long proofs even for the extremely simple example they present. They argue that 
their technique could be automated but provide no tool for their system. 

Abadi and Gordon propose the spi calculusr an extension of the pi calculus with cryptographic primitiver 
as another model for describing and analyzing cryptographic protocols [1]. The spi calculus models commu- 
nicating processes in a way that is very similar to CSP and CCS. The spi calculus provides constructs for 
output on a channeir input on a feanneir restrictionr compositionr testing for cquaW pairs and projectionsr 
encryptionr decryption and for branhing on equality to zero. What sets the spi calculus (and the pi calcu- 
lus) apart from other calculi is the dynamic nature of the scope of restriction. The restriction operator can 
be thought of as creating a new name to which only processes within the scope of the restriction operator 
can refer. Howeverr one of these processes could output this new name outside the scope of the restriction 
operator allowing another process to refer to it. In the pi calculusr these new names can be though of as 
private channels. In the spi calculusrthe restriction operator is used to model nonces and keys. So farr 
protocol models have been verified by comparing to a slightly altered model that is "obviously" corrcctr and 
isr thereforer at the same lcnl of abstraction as the protocol model. 

A more concrete and complete model is presented by Heintze and Tygar [11]. They view protocols as a 
set of agents modeled as non-deterministic finite state machines. The actions of a principal who must follow 
the protocol depend on the local state of that principal and so are in some sense restricted. The actions of 
adversaries are not restricted by the protocol and hence they are allowed to perform any actions consistent 
with their current knowledge. (In other wordsl1 they cannot send messages that they cannot generate from 
their current knowledge). Their model also includes a notion of beliefT whih along with the sequence of sends 
and receivesr defines the local state of a principal. Security is then split into secret-security and time-security. 
A model is secret-secure if all beliefs are universally valid. In particular if any principal ever believes that 
a message M is only shared among the principals in ST then it is arrays the case that if A knows M then 
A 6 S. A model is time-secure if all beliefs eventually expire. In other wordsHf b is a belief held by a 
principal A at event e then there is an event e! such that 6 is not held at any event following e'. The authors 
go on to prove that the questions "Is P secret-secure?" and "Is P time-secure?" are undecidable. While this 
model does a good job of capturing what one means by "sRcurityT" the model seems too complex to be used 
in practice. 

3    Intuition 

We also propose a model checking scheme for the verification of security protocols and we make use of the 
same "perfect encryption" assumptions. We propose a very intuitive model which captures the basic idea 
of message generation and communication. Unlike other systemsrwhere the protocol must be encoded in 
CSP or in term rewrite rulesrin our modeirprotocol definitions are easily translated into a sequence of 
commands like SEKD, REOElVEPand NEWKONOE. In factTit seems clear that this translation could even 
be done automatically from the simple notation used to describe protocols in the literature as sequences of 
messages that occur during a run of the protocol. 

Once we have a sequence of actions for each of the participants we take their asynchronous composition to 
get the full model of the protocol. There is one other unspecified participant which we call the intruder. The 
intruder models an untrusted communication medium as well as any malicious principals. When messages 
are sent they can always be intercepted by the intruder. The intruder is also allowed to send messages while 
impersonating a trusted principal.  The intruder may even be selected as a participant in a protocol run. 



In additionr the irtrudor will bo allowed to compromise temporary seeretsr suh as session keysr whih are 
generated during the run of tho protocol and are not meant to be treated as permanent secrets. Care must 
be takenr hwovcrr because it is unreasonable to alkw the intruder to compromise temporary session keys 
as soon as they are generated. In some sensor the participaits should be allowed to make some use of the 
key before it is allowed to be compromised. 

A run of the protocol will then consist of some interleaving of actions from tho participants and the 
intruder. This particular run or trace can then be analyzed to determine if the security of the protocol was 
compromised. In particular we can check if the intruder over learns a secret which is meant to bo permanent 
or if some principal A believes it has completed a run with principal DT while principal!? has not participated 
in tho run. In generaTa set, of security requirements can be specified in some kind of logic and then the 
trace can bo checked to see if any of these requirements are violated. Howovorl"1 to vjify that a protocol is 
corroctr all the possible runs mist be chocked. 

Wo can think of a trace as an alternating sequence of global states and actions. The global state will 
consist of tho local state of each participant together with some global information like the sot of secret 
informationr and whih principals have participated in which protocol runs. Since each principal has a unite 
number of actions it can take at any point in time (typically just one)rthen the number of possible next 
states is finite. If we restrict ourselves to a sufficiently larger but still finite lumber of runsr then tho oriirc 
state space will bo finite and we can do dopth-first search of the state space simply checking that no reachable 
state violates tho security specification. 

4 The Specification 

There are two kinds of properties that wo currently are interested in. The first is a kind of secrecy property. 
We provide the model checker with a sot of terms which the intruder is not allowed to obtain. During tho 
verificationr TO simply check that the intruder does not have possession of any of tho terms in this sot. This 
is not as straightforward as it might seem because tho information known to tho intruder is typically infinite. 
For oxamplor if the htrudor knows a piece of data and a kojT it can repeatedly encrypt this data to produce 
an infinite number of new terms. 

The second property is a temporal property that Woo and Lam call correspondence [23]. In particularr 
we are interested in cheeking that "if principal A believes it has finished a protocol run with principal DT 
then principal D must, have begun a protocol run with principal A" This can be generalized to "if event 
X occursr then 0T;nt Y must have occurred in the past." (We will use Woo and Lam's notation X «-» Y 
to denote this.) Howoverr there is more to this proper^ than a simple temporal relationship. The relation 
between Y events and X events must bo a one-to-one mapping. More formallyl1 tho projection of aiy trace 
onto X events and Y events must, be derivable from the following grammar: 

S -> SxSy\(. 

where the terminal symbols x and y represent the events X and Y. In particularr if principals! believes it, 
has completed two protocol runs with principal DT then principal/? must have at least begun two protocol 
runs with principal A. Each end of a protocol run on A's part, must bo mapped to a separate beginning of 
a protocol run on D's part. 

In order to check for this kind of proportyFwo will augment, the global state with counters. For each 
correspondence property J^Fwc will maintain a separate counter which will keep track of the difference 
between tho number of Y events and X events. If this counter over turns negative (i.e. there are more 
X events than Y events) then the correspondence property will bo violated at, that point, (there will be no 
one-to-one mapping from X events to Y events). ConversolyFas long as the counter never goes negative 
there is always a one-to-one mapping from X events to Y events. 

5 Messages 

Typicallyr themessagos exchanged during the run of a protocol are built up using pairing and encryption 
from smaller submessages.  The smallest, such submossagos (i.e. they contain no submossages themselves) 



aro called atomic messages. Thorn arc four types of atomic, messages. 

• Keys aro lisod to oncrypt mossagos. Wo make the "perfect encryption" assumption? which states 
that the only way to obtain the plaintext from an encrypted message is by using the appropriate 
decryption key. Keys have the property that every key k has an inverse fc_1 such that for all messages 
mr{{m}t}t-i = m. (Note that for symmetric cryptography the decryption key is the same as the 
encryption keyr sofc = fc_1.) 

• Principal names are used to refer to the participants in a protocol. 

• Nonces are randomly generated numbers. The intuition is that since they are randomly goneratedr ary 
message containing a nonce can be assumed to have been generated after the nonce was generated. (It 
is not an "old" message.) 

• Data which plays no role in how the protocol works but which is intended to bo communicated between 
principals. 

Let A denote the space of atomic messages. The set of all messages M over some set of atomic messages 
A is defined inductively as follows: 

• If a 6 A then a e M. (Any atomic message is a message.) 

• If mi £ M and m2 6 M then mi ■ m2 6 M. (Two messages can be paired together to form a new 
message.) 

• If m e M and key k 6 A then {m}k e M. (A message M can bo encrypted with key k to form a now 
message.) 

Because keys have invorscsIVo take this space modulo the equivalence {{m}k}k-i = m. It is also 
important to note that wo make the following perfect, encryption assumption. The only way to generate 
{m,}k is from m and k. In other wordsrthero do not exist messages m, mi, and m2 and key k such that 
{m}k = mi • m2T and{m}t = {m'}k, implies m = m! and k = k'. 

Let B C M be a subset of messages. The closure of B (denoted B)F ropreseiting the set of everything 
that can be derived from BF is defined h/ the following rules: 

1. If meB then me B. 

2. If mi e B and m2 e B then mi ■ m2 € B. (pairing) 

3. If mi ■ m2 € B then mi e B and m2 e B. (projection) 

4. If m 6 B and key k € B then {m}k E B. (encryption) 

5. If {m}k e B and key k'1 E B then mE~B, (decryption) 

6    The Model 

We now define the model formally by describing how the overall global state and the individual principal 
local states are defined as well as by describing how actions update the state. The model consists of the 
asynchronous composition of a set of namedr comminicating processesr eah augmented with a local store 
in which to keep track of the current information it "knows" T and with a set of bindings for the -ariablos 
appearing in the process. Each principal involved in the protocol is modelled as one of these processes and 
is described by a sequence of actions it is to perform and by the initial state of its local store. The initial 
state of the bindings is assumed to bo empty. One prooessr the iitrudorr is not completely specified. Only 
the initial state of its local store is given and it is allowed to perform any "realistic" actions. For cxamplcl" 
the intruder is not allowed to decrypt messages with a key it does not possess and it is not allowed to send 
messages that it cannot create with the information in its local store. But it is allowed to receive and send 



messages arbitrarilyr possibly iitcrccpting messages intended for other principals or possibly impersonating 
a trusted principal. 

More formalhT oah principal is modelled as a 4-tuplo (N,p,I,D)T where: 

• N e  names is the name of the principal. 

• p is a process (similar in style to CSP) given as a sequence of actions to be performed. 

• I C M is a set of all messages known (which can be produced) by the principal. M is the set of 
all possible messages. Typically I will be infinite and in particularrit is closed under encryptionr 
decryptionrpairing (concatenation)rand projection. For examplerif m,k € I then {m}^ 6 I. For 
some set of messages JT w. will use J to denote the closure of J under these operations. 

• B :  vars(p) -> IT whcrcuar.?(p) is the set of variables appearing in the process pT is a set of bindings. 

The global state is then maintained as the composition of the participating principalsralong with the 
intruder processra list of permanent secretsra list of temporary secretsrand a set of counters indexed 
by the pairs of principals participating in protocol runs. More formallyrthe global state is a 5-tuplc 
{U,Ci,Cr>Ss>St)T where: 

• II is the product of the the individual principals and the intruder process. This product, is asynchronousr 
yielding an interleaving semanticsr with the restriction that processes synhronize on messages. 

• d : names x names -» N gives the difference between the number of times some principal with name 
A has begun initiating a protocol with some other principal with name B and the number of times B 
has finished responding to principal A. If a counter ever gets a negative value this means that B has 
finished responding in a protocol with A (i.e. believes A has participated in the protocol) without A 
having taken part in the protocol. 

• C,. : names x names -> N gives the difference between the number of times some principal named 
A has begun responding to some other principal named B and the number of times B has finished 
initiating a protocol with A. If a counter ever gets a negative value this means that B has finished 
initiating a protocol with A (i.e. believes A has participated in the protocol) without A having taken 
part in the protocol. 

• S„ C M is a set of messages that are are considered safe secrets. These are the set of words that 
the intruder is never allowed to know. This set remains constant and usually includes things like the 
private keys that principals use to communicate with a server. 

• St C M is a set of messages that are are considered temporary secrets. This is the set of new secrets 
generated during the run of the protocol. These are secrets which we assume the intruder may be able 
to discover by some outside meansr but whih the protocol should not reveair suh as session keys. 

The specific actions that a principal may perform can be divided into internal actions and communication 
actions. The internal actions are performed asynchronously. Any principal is allowed to perform an internal 
action and interleaving is used to model all possible behaviors when multiple principals can make a transition. 
We define a transition relation —> between principals such that A -> B if and only if principal A can take 
an action and become a principal that behaves like B. 

Communication actions consist of send and receive actions. Each receive action can potentially change 
the principal's local storer reflecting ar/ new information it has "learned." Communication actions can only 
occur in pairs and both principals make a transition simultaneously. These communication actions are also 
interleaved with the possible actions of other automata. 

In order for a communication action to take placer the message being seit must unify with the message 
being received. A message s-msg from principal A = {A,P,1A,DA) unifies with a message r-msg from 
principal B = {B,q,lB,BB)T if there exist a substitution^e : vars(q) -> 1A extending BB {BB C CTgjr suh 
that BA{s-msg) = (TB(r-msg). If the messages unifyr then the folkwing transitions can be taken: 



{A, SEKD{s-msg).p',IA,BA)    ->    {A,p',IA,BA) 

(B, HECEWE(r-ms£/).(f,lB,BB)    ->    {B,q',IB,aB) 

whore I'B = IBli <TB (r-msg). Because wo require that s-msg unify with r-msgT if thnro is already a pair {larT 
val) in B for some var appearing in r-m.sjrthon the eorresponding value in s-msg must be val. Thus the 
updates to B only add now bindings and never change previous bindings. 

For tho most part internal actions are used to create or discover new information. For oxampler 
KEWNONCE is used to create a nonce. Nonces are globally distinctr and each NEWKONCE action creates 
a nonce that has not, appeared up to that point in the protocol. The now nonce is added to the principal's 
local store. NEWSECRET works similarlyF except that this is supposed to model generating a new session ley 
which can then be used to encrypt messages. More formally: 

(yl,NEWNONCE(ijar)y,/,.ß)    ->    (A,p',I',B') 

(A,KEWSECRET(var).p',I,B)   ->    {A,p',I',B') 

where in both casesr ifval is tho new value generated by the actionT then/' = I U val and B' = B\var <- val\. 
If the action was a NEWSECRET actionr then thoSt is updated in the global state as well to S't = St U val. 

Additionallyr the iitruder is allowed to perform a GETSEOR.ET action which it can use to acquire a secret 
previously generated by a principal using NEWSECRET. This models the possibility of session keys being 
compromised. It allows us to have two classes of secretsr those whih we assume to be "permanent" like a 
private key between a server and a trusted principair and those secrets whifa are "temporary" such as session 
keys. We need to allow the intruder to obtain session keys in order to allow for tho possibility of replay 
attacks which would allow the intruder to establish an old compromised key as a session key. Howeverr TO 

also need to restrict the the usage of GETSEOR.ET or else the intruder would bo allowed to compromise a 
session key immediately after it is generated and before it is ever used. For this reasonr TO only allow the 
intruder to perform a GETSECRET action to compromise a key which has already been established or used 
in a protocol. Formallyr 

(Z,GETSEOR.ET.p',7,i?)     ->     (Z,p',I',B) 

where for some val eJtl/'=/U val and in the global state St is updated to 5| = St-{val}. 
Finallyr TO have four special actions BEGINnTENDINITrBEGRESPONDr andEKDRESPOND. These are used 

to mark the beginning and the end of a principal's participation in a protocol. We use them to guarantee 
that if the principal named A finishes the protocol (performs ENDINIT(B)) then the principal named D has 
participated in the protocol (performed BEGRESPOND(A)). Wo do this by maintaining counters for each pair 
of principals participating in a protocol. More formallyr 

{A,BEGmiT(B).p',IA,BA)   ->   (A,p',IA,BA) 

and wo update the global state by setting the new value of d(A, B): 

°^A'B>-\1 otl 

Similarlyr 

(ß,ENDR.ESPOND(A).})',JB,.BB)     ->     (B,p',IB,BB) 

\Ci{A,B) is donned 
otherwise 



and wo update tho global state by sotting tho now value of Cj(yl, B): 

"■   '    '      ^  error 
B)-l   HCi(A,B)>Q 

otherwise 

The definitions for BEGRESPOND and EKDIKIT are identical except that Cr is updated in tho global state 
instead of C{. 

The GETSECRET action may only bo performed by tho intruderrwhile the rest of tho actions may bo 
performed by any principal. The actions a particular honest principal may make are restricted to tho sequence 
of actions p that represent its role in tho protocol. The intruder has no such restriction and is allowed to 
make any acticm at any timerprovided that if it performs a SEKD action with message mTik must bo tho 
case that m E Iz- 

Recall that a trace is an alternating sequence of global states and actions and that we are interested in 
checking all possible traces. Cloarlyr there are a finite lumber of next states for each of the participants. In 
additionr while the iitrudor can generate an infinite number of messagesr it is only allowed to send a finite 
number because each SEKD much match with a RECEIVE. Since the there are a finite number of passible 
next statosr w only consider a finite number of runsr w. can perform a depth first search of the state space 
to generate all possible traces. We then chock that no reachable state violatos the security specification. 
Pseudocode for this algorithm can be found in figure 1. 

proc DFS (global-state:) 
pnsh(glolal-stat.eXS) 
while (not empty(S)) do 

(■n,Ci,Cr,Ss,St)=Pop(S) 
if Ci(x,y) < 0 for some x and y or 

C,-(x,y) < 0 for some x and y or 
s € Iz for some s 6 S» U St 

/* where Iz is the intruder's information in U. */ 
then report-error 
L = next.-st.ates({U,Ci,Cr,SH.St)) 
for each I e L push(S, I) 

Figure 1: Model-chocking algorithm 

The remaining detail is how to maintain the local stores for the principals. The local store is accessed in 
three places. Firstr if principal(A,j3, IA, BA) sends a message rriT then TO must insure that m € IA. Secondr 
if the principal receives message mT then w, must update IA to I'A = IA U m. Finallyr TO check every global 
state to see if s e Iz for some s 6 S„ U Sir whoro/^ is tho intruder's local store. It turns that these local 
stores are infinite because of the closure operation. HoweverFwo never really need to compute the entire 
closure: we need only determine if a particular message is in the closure. So it suffices to represent the 
infinite set with a finite set of "generators." This is tho topic of tho next section. 

7    Normalized Derivations 

Intuitively speakingr ifß represents some set of information thatjs known by a prineipair then tho principal 
also knows (can generate) all tho information in B. In general B is an infinite set; howeverF TO usually are 
not interested in tho sot of everything that a principal knowsr but instead whether or not a specific message 
x € M can be generated by a principal. This leads us to the following definition. 

Let leßbti a message. A derivation of x from B is an alternating sequence of sets of messages and 
rule instances written as follows: 

.ßo^£i^---ß*-i7V.Bfc 
where: 



. B = Ba 

• xeDk 

• Each rub instance it; is written as (If,Ni,Oi) where: 

- h C ß; 

- £»+i = Bi U 0; 

- Arj is one of the closure rules for B such that Jj satisfies the premise of the rule and Oj is the 
corresponding conclusion. 

For exampler lctZ? = {{a}k ■ b, fc-1}. We derive x = a-b as follows: 

1. Bn = B = Ua}k-b,k-1} 

2. R« = (Ua}k-b},3,{Wh,b}) 

3. ^^{{aH-ft.fc-1^«,}^?.} 

4. R1 = {{{a}k,k-1},ö,{'i}) 

5. £2 = {{«}* ■ b,k~\{a}k,b,a} 

0. Ä2 = ({a,ft},2,{a-6}) 

7. #3 = {{«}*: • f>,k~x,{a}k,b,a,a- b} which contains x 

We would now like to introduce the notion of a normalized de.rivationTbut first we must introduce the 
notion of shrinking rules and expanding rules by defining a metric /x : M -> N. Wo then define a shrinking 
ride to be a rule such that for every instance of the rule (I, N, 0) we have: 

max/x(m) > max/x(m) 

Analogouslyr imexpanding rule is a rule for which every instance (/, N, 0) we have: 

max/j(m) < min /x(m) 
rn.£I m€0 

We can now define a normalized derivation as follows: 

B^B^-.-B^^B, 

is a normalized derivation if and only if for all 0 < i < k,N{ is an expanding rule implies Nj is an expanding 
rule for all i < j < k. In other wordsr all shrinking rules appear to the left of all expanding rules. Recall 
that in our notationrß; is the rule instance (Ii.Ni, Oi)T 

For exampler in our modeir wwill define our metric /x inductively as follows: 

• ji(a) = 1 for all a, e A 

• /i(m,i ■ m2) = /i(mi) + /x(m2) 

• /x({m}t) = /x(m) + 1 

Note that /x(m) is well defined when m = {m.i}kl = {m^j^T because the perfect encryption assumption 
implies that mi = m2 and k\ = fc2. In the case m = nii • m2 = mi • m2 either mi is a substring of mi or 
mi is a substring of mi. Without loss of generalityr assumemi = m[ ■ b. Then it must bo the case that 
m2 = b • m2 because we have m = m,x ■ m2 = m[ ■ b ■ m2 = m[ • "4- Therefore 

/x(m) = /x(mi • m2) = /x(mi ■ b ■ m2) = /x(mi • m2). 

1Ü 



The message derivation rules from section /rcfscct:mcssagcs can now be categorized. With these doflnitionsF 
rules 3 and 5 are shrinking rules and rules 2 and 4 are expanding rules. 

We now show that in our modeirthere is a derivation of x from B if and only if there is a normalized 
derivation of x from B. First we need the following lemma. 

Lemma 1: Let Da -4 B\ -4 Bz be a derivation of length 2 such that Na is an expanding rule and N\ is a 

shrinking rule. There there exists a derivation B'n -? B[ -4 ■ ■ ■ B'k_1   -*
1 B'k such that 

1. N[,...,iV£_j are expanding rules. 

2. B0 = K 
3. B2 QB'k 

Proof: 

Case JV0 = 2 and JVi = 3: 

Let RQ = ({mi,m2},2, {mi -ma}) and Ai = ({m[ ■m2},3,{m[,7n'2}) 

Case I: Tn[ ■ m2 ^ m\ ■ m2 or mj • m'2 6 Bo 

In either casoIWj • m'2 € BnT and the new dermtion is 

Ro    =   Ri 

Ri    =    Ra 

Case II: m[ ■ m2 = mi • m2 and m[ ■ m'2 g Bn 

If we also have m'j = m-i and m2 = m2r thenmi, m2 e Bn C Bi. Therefore B2 = -Di and we let the 
new derivation consist only of 

Ra    —   Ra 

Otherwiserwe must have that either mi is a substring of m[ or m[ is a substring of m,y. Without 
loss of generalityP assumcm-i = m[ ■ b. Then it must be the case that m2 = b ■ m2 because we have 
m = m,i • m2 = mj • b ■ m2 = mj • m2. Then the new derivation becomes: 

K = ({mi},3,{m'i,6}) 
R'i = ({6,m2},2,{m2}) 

i?2    =    ({mi,m2},2,{mi-m2}) 

And we have that 
B'3 = B0U {mi, b} U {m'2} U {mi • m2} = 2?2 U {ft} 

Case JV0 = 2 and Ari = 5: 

Let iJo = ({mi,m2},2,{mi -m2}) and Äi = ({{m}t,fc_1},ö, {rn}) 

One of our assumptions about encryption is that given mr the only -my to generate {m}n is by knowing m 
and k and using the encryption algorithm. Therefore there are no mi and m2 such that mi • m2 = {m}t. 
Sor in this cascl{m}t 6 Ba and the new derivation becomes 

Ra   =   Ri 

Ri    =   An 

It is clear that B2 = BL 
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Case N0 = 4 and Ar! = 3: 

Lot, Ao = {{m,k},i.{{m}k}) and Ai = ({nil •m2},3,{mi,m2}) 

Againr sinco TO can't havo m-i -m2 = {m}*r TO must, havo that, mi -m-i 6 Ao and tho now derivation becomes 

RQ    =   Ri 

Äj    =   Ro 

AgamTB2 = A2. 

Case A0 = 4 and Ni = 5: 

Lot, Ra = {{m,k},4,{{m}k}) and Äj = <{{m'}*,1Ar'-1}1ö,{m'}) 

Cast! I: {m!}k, = {m}k 

In this casor TO also havo m' = m and fc' = kT thcroforcßi = A2 and so tho now derivation is: 

Ra   =   Ra 

Cloarlyroi = A1=A2. 

Caso II: {m'}ji< 5^ {m.}t 

It, must, bo tho caso that, {m1}^ e Da so tho following is a valid derivation: 

Ra    —   R\ 
Rl    =   Ra 

Theorem 2: Let, D C M bo a set, of messages. Then x € B if and only if x has a normalized derivation 
from B. 

Proof: If x has a normalized derivation from B then clearly this is a derivation and by definition x € B. 
For the other directionr lota; e A. Then there exists some derivation 

such that x € Bk. Lot, 5 = {i\Ri is a shrinking rule and 3j < i such that, Rj is an expanding rule }. If S is 
omptyT then F is a normalized dorration and we are done. Otherwiser TO can induct, on the size of S. Lot, 
r = min S. By repetitively using Lemma ir TO can move A,, to the leftF urtil either it, is the leftmost, ruler or 
it is immediately to the right of another shrinking rule. Since the original derivation is finite and since each 
time we apply Lemma ir ruloii,. moves one slot, to the leftF TO need apply Lemma 1 only a finite number of 
times. If A,, becomes the leftmost, ruler then clearly there are no expanding rules to the loft, of A,-. If A,, is 
now immediately to the right, of another shrinking rule AST then there are still no expanding rules to the left 
of Ar because then there would be an expanding rule to the loft, of AK in tho original derivation and so s e S 
and s < r contradicting the minimality of r. Now we have a new derivation of .ijrrTwhich is still finite. 
Since the application of Lemma 1 does not add any new shrinking rulosrST the ncwST satisfies^' = S — {?■}. 
Furthermore \S'\ = \S\ — IT so H; the inductive hypothesis we can transform V into a normalized derivation 
of a;. 

Corollary 3: Given x e A^jind B C MT determining ifa; 6 B is docidablo. 
Proof: By Theorem 2r.i; e B if and only if x has a normalized derivation from B. Wo therefore try to 

find a normalized derivation or show that, none exists. First, wo repeatedly apply shrinking rules to B = Ba 

creating new sets B{. Since there are a finite number of rulosr oah rule creates a finite number of now wordsr 
each smaller (by the metric /J) than each of tho words used as an input, to the ruler andA0 is finite to beginr 
there are only a finite number of A; !s and hence we only apply shrinking rules a finite number of times. Let, 
us call this final sot, Bs. Sinco B„ is the result, of repeatedly applying all possible shrinking rules to AFa; has 
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a normalized derivation from B if and only if it has a derivation from B„ which uses only expanding rules. 
Furthermorer the length of a minimal derration of x from B„ is bounded by ß(x) since each expanding rule 
creates a words that are longer than the words used as inputs to the rule. Since there are a finite number of 
expanding rules and Bs is itself finitcr wi can simply try all possible sequences of expanding rules of length 
less than or equal to ß(x) in a finite number of steps. Thorcforcrthis whole algorithm is guaranteed to 
terminate. 

In the proof of Lemma irtho majority of cases displayed a kind of independence of rules. IntuitivolyT 
independence means that applying one rule does not increase the set of things that can be derived using 
the other rule. More formallyra shrinking rule s is independent of an expanding rule c if for each pair of 
instances {IK,s,0K) and (7,.,c,0e) we have one of the following: 

1. Oe n I, = 6: The output of the expanding ride cannot be used as input to the shrinking ride. This is 
the case for pairing and decryption and for encryption and projection. 

2. 0, C Ir: The information gained by applying the shrinking rule was already present when applying 
the expanding rule. This could bo the case when for encryption and decryption using the same key. 

Note that this property applied to almost all cases of Lemma 1 and that the only real work in proving 
Lemma 1 came from the case of the pairing rule and projection rule because these are not independent. 
The other pairs of rules were independent because of the "perfect encryption assumption." In generair this 
exchanging property (Lemma 1) need only be shown for pairs of rules that are not independent. 

8    Information Algorithms 

While Corollary 3 proves the decidability of determining if a; 6 BT it is an extremely inefficieit algorithm. 
In particularr enimerating all sequences of expanding rules of length /i(x) will yield exponential complexity. 
In practice howeverr TO can search for a derivation of x from Bs by using the structure of x. Specificallyr w: 
have the following theorems: 

Theorem 4: mi ■ m2 € BH jf_and only if mrm2e Bs or mi e SJ and m-2 £ #7- 
Proof: Assume mi • m2 £ Bs and mi • m2 £ B»T thenmi -_m2 must be in ~WS because of an expanding 

rule. Dy assumptionrmi • m2 $ B„. To show that mt • m2 6 BK can be derived from BH without using a 
shrinking rule we take a derivation of mi ■ m2 e BHT TEmd use theorem 2 to get a normalized derivation 
T'. Now either the shrinking rules appearing in V are redundant (i.e. they don't add any new words and so 
can be removed from the derivation) or we contradict the fact that B„ was created by applying all passible 
shrinking rules to B. In either case the remainder of the derivation (and there must be some remainder 
since we assume that mi ■ m2 0 B„) must consist of expanding rules. In particular the last rule used in the 
derivation must be an expanding ride and the only way that could be the case is if it is rule 2 which would 
require as its premise mi e B„ and m2 € B„. 

Now assume that mt • m2 e Z?„ or mi e B„ and m2 £ TT,. Then it is clear by either rule 1 or rule 2 that 
m,i • m2 e B„.   

Theorem 5: {m}k e B„ if and only if {m}k 6 B„ or m 6 TTK and k e ~Bl. 
Proof: Analogous to the previous theorem. 
Putting all these together yields the basis for our search algorithm. As our set of known messages 

increasesrwe repeatedly apply shrinking rules and removing "redundant messages" until we get a set of 
"basic" messagesri?,.rto which we cannot apply any shrinking rules. By redundant messagesrwe mean 
messages that can be generated from the other messages in the set using expanding rides. For oxamplor 
when we apply rule 3 to get mi and m2 from mi • m2IVo also remove ma • m2 from B„. Howeverr when 
applying rule 5 we must be careful; when we generate m from {m}k and fc_1 we cannot remove {m}t from 
B„ unless k e B„. Pseudocode for this algorithm is given in figure 2. 

We now consider the complexity of inserting a new message m into our current set of information B„ 
and generate a new set of information B'H. The only time there is any interaction between previously known 
messages in Bh and m is when we try to apply the decryption rule. The message m can have at most 
\m\ encryptions. For each oncryptionrwo scan Bs looking for the inverse key for a total of |U»||m| time. 
AnalogoiislyTm could contain at most \m\ keys. For each keyr w; must check each element of B„ to see if it 
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1   function add(7,m) 

2 for nach i e 7 
3 if % = {x}y and j/_1 = m 
4 then 7 = add(7, x) 
5 iiy € I then I = I — i 
6 \im~x-y 
7 thnn rnturn add(add(7,3;)I?/) 
8 if m = {a;}w and y~l 6 7 
9 then if y 6 7 
0 thnn rnturn add(7,a;) 
1 nlso return add (7 U m, a) 
2 rnturn /Urn 

Figure 2: Augmenting the intruder's knowlndgn 

can now bo decrypted. Againr this tabs at most |7Js||m| time. HowovoriT the newly decrypted message could 
again be decrypted. The number of iterations is bounded by \BK\: thereforer the total time to generateTJ^.r 
is bounded by 0(|7?„|'2|m|) and the_siüo of B's is bounded by 0{\D„\2). 

We know that any words in BK can be derived using only expanding rules. When we search to see if 
a word in is knownr w: can use theorems 4 and 5 to break it down into smaller pieces which can then be 
searched recursively. For nxampMT if«; 0 D„ and w = {m}jtrthnn theorem 5 tells us that w E Ds only if 
m € D„ and k 6 B„. Pseudocode for this algorithm is given in figure 3. 

1 function in(7,m) 

2 if m e 7 
3 then return true 
4 if m = x ■ y 
5 then return in(7, x) and in(7, y) 
6 if m = {x}y 

7 then return in(7, x) and in(7,)/) 
8 retiirn false 

Figure 3: Searching the intruder's knowledge 

When searching for a derivation of w from B„ we first check to see if v) 6 Bs. This costs at most B„ 
time. If notr w break down w into two smaller pieces and recursively check those peices. The total number 
of recursive calls is bounded by the number of operations making up wTwhich is in turn bounded by |i/;|. 
Tims the total time to check if w € B„ is bounded by 0(|2?„||ti;|). 

9    Verification Example 

We now consider an example to illustrate how the model checker works. We consider the simplified Needham- 
Schroeder protocol analyzed by Lowe [10] given below: 

I. A^B: A.B.{Na.A}KD 
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2. B -> A : B.A.{Na.Nt}KA 

3. A -» # : A£.{JV,,}*rD 

Hero A is tho initiator and ß is the rospondor. A selects a nonce N,h and sends it along with its name 
encrypted with B's public key to D. B uses its private key to decrypt this message and obtain Na. Now 
D generates its own nonce N], and sends it along with JV„ encrypted with A's public key to A. A uses its 
private key to decrypt this message and returns jVj, to B encrypted with B's public key. B then uses its 
private key to verify that it has just received the nonce sent earlier. 

In order to use our model cheekerr ve first isolate which actions are performed by A and which actions 
are performed by B. We then write a short sequence of actions which make up each participant's role in 
the protocol. The process description for principal A can be found in figure 4. The description for principal 
B is similar. All that remains is to specify the initial state of each principal's local store. Each principair 
including the intruderrknows the names of all three principals. Each principal also knows the public key 
of each of the three principals. Finallyr oah principal knows it's own private key. Figure 5 lists the initial 
contents of the intruder's local store which consists of the names of the three principalsr all three public leys 
and it's own private key. 

((beginit (*p-var* b)) 
(newnonce (*var* na)) 
(send (*var* b) 

(concat a 
(*var* b) 
(encrypt (pubkey (*var* b)) (concat (»var* na) a)))) 

(receive (*var* b) 
(concat (*var* b) 

a 
(encrypt (pubkey a) (concat (*var* na) (*var* nb))))) 

(send (»var* b) 
(concat a 

(*var* b) 
(encrypt  (pubkey  (*var* b))   (*var* nb)))) 

(endinit  (*var* b))) 

Figure 4: Process description for the initiator 

(a b »intruder*  (pubkey a)   (pubkey b) 
(pubkey »intruder*)   (privkey »intruder»)) 

Figure 5: The intruder's initial knowledge 

The result of the verification attempt can be found in figure G. In just a few secondsr the model heckor 
finds a violation of the security specification and generates a counter-example. Figure 7 provides an easier to 
read description of the attack. The sequence of messages for two runs of the protocol (a. and ß) are provided. 
The notation 1(A) is meant to convey either / impersonating A if on the left of the arrowr or/ intercepting 
a message meant for A if on the right of the arrow. 

If we examine the counter-example we can see what has happened. A initiates a protocol run with the 
intruder. The intruder initiates a protocol run with B impersonating A and using the same nonce that A 
used with the intruder. When B respondsF the irtruder forwards this message to A. This message has the 
format that A is expectingr namely its (wn nonce and a new nonce encrypted with A's public key. A then 
replies back to the intruder with B's nonce encrypted with the intruder's public key. The intruder can use 
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its private key to decrypt this and it can now return D's nonce encrypted with D's public key. When B 
receives this messager the protocol run is complete andß believes it has finished a protocol rim with A while 
A does not have the corresponding belief that it has initiated a protocol run with D. 

The above analysis is mast easily seen in figure 7 by observing the following relationship between the a 
run and the ß run: 

• The role of A in a is played by / in ß. 

• The role of I in a is played by D in ß. 

• Each message in ß can be obtained from the corresponding message in a. by replacing every occurance 
of / with D. 

Thcrcforcr the/3 run is identical to the a run except that D plays the role of the responder and I impersonating 
A has played the role of the initiator. 

"Lack of correspondence" 
(B (BEGRESPOND A)) 
(A (BEGINIT »INTRUDER*)) 
(A ((NEWNQNCE (*VAR* NA)) (*NQNCE* 245))) 
(A 
(CONCAT A »INTRUDER* 
(ENCRYPT (PUBKEY »INTRUDER*) (CONCAT (»NONCE* 245) A))) 

INTRUDER) 
(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (CONCAT (*N0NCE* 245) A))) B) 
(B ((NEWNQNCE (»VAR* NB)) (*N0NCE* 260))) 
(B 
(CONCAT B A (ENCRYPT (PUBKEY A) (CONCAT (*N0NCE* 245) (*N0NCE* 260)))) 
INTRUDER) 
(INTRUDER 
(CONCAT »INTRUDER* A 
(ENCRYPT (PUBKEY A) (CONCAT (*N0NCE* 245) (*N0NCE* 260)))) 

A) 
(A (CONCAT A »INTRUDER* (ENCRYPT (PUBKEY »INTRUDER») (»NONCE* 260))) 
INTRUDER) 

(A (ENDINIT »INTRUDER*)) 
(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (»NONCE* 260))) B) 

Figure G: Verification Result 

«1. A -> / A.I.{Na.A}Kl 
01. 1(A) -> B A.B.{Na.A)KD 

02. B -> 1(A) B.A.{Na.Nh}KA 

a-2. I -> A I.A.{N,I.N,,}KA 

a.Z. A -> I A.I.{N,,}KT 

ßZ. 1(A) -> B A.B.{Nh}KB 

Figure 7: Attack on Needham-Schroeder Protocol 

Lowe suggests fixing the protocol by changing the second message so that the new protocol is as follows: 

1. A -» B : A.B.{N,h.A}Kn 
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2. D -> A : £.A{iV„.JV,,..D}KA 

3. A -> £ : A.D.{Nh}Kn 

Whnn wo try to verify this protocoir lilc Lower TO find no attack in a single: run of thn protocol. Because 
no attack was foundrtho entire exhaustive search of the state space is performed and so the verification 
process takes a bit longerr but it still completed in under a mimte. 

10    Conclusion 

Our model checker provides a number of advantages over other formalisms. The way we model a protocol 
is very intuitive. We simply list the sequence of actions that each participant takes in the protocol. Unlike 
systems based on logicsr ve need not interpret the beliefs that each message is meant to conveyr and VK can 
generate counterexamples when an error is found. Unlike term rewriting approachesr TO need not construct 
a set of rewrite rules to model how an intruder can manipulate participants to generate new messages. We 
simply model the protocol as a set of programs!1 one for eah participant in the protocol. Because we separate 
the algorithms that maintain the intruder's knowledge from the state exploration algorithmsr TO also never 
need to encode the intruder for our models. 

The prototype model checker described here has successfully discovered previously published errors in 
protocols. When run on correct protocoM1 the model hecker takes a bit longer because it ends up exploring 
the entire reachable state spacer but for the examples investigated so farlHho system still terminates in 
about a minute. We are confident that this kind of exhaustive simulation is a feasible and useful technique 
for verifying security protocols. Howeverrthere are still many extensions that can be investigated and 
implemented as well as additional experiments to be carried out. 

Despite that fact that there is a simple and straightforward translation from protocol descriptions in the 
literature into our modelling languager this process is tedious and prone to error.We are currently developing 
a better interface that would allow protocols to be specified exactly the same way they are specified in the 
literature. We are also working on defining a logic in which to specify the properties we are interested in 
checking. We are investigating how to add other message operations such as XOR and encryption with 
non-atomic keys. While these extensions should be possibler it is not clear hew these additions will affect 
the efficiency of our decision procedure for message derivations. 

Efficiency is also an important concern. Currentlyr the model hecker runs in an acceptable amount of 
time. As we begin to increase the number of concurrent protocol runsr and as TO increase the complexity of 
the model checker itselfT ve can expect the execution time to increase dramatically. Techniques that increase 
the efficiency of the model checker are necessary to combat this increase in complexity. In particularr it has 
become clear that a number of operations can be thought of as independent of each othcrr in the sense that 
they can be swapped in the execution trace without affecting the rest of the trace. This leads us to believe 
that partial order techniques [20] can be applied. The increase in efficiencyr ease of useP and expressibiljt 
will prove useful in analyzing more complex protocolsr including electronic commerce protocols. 
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